ULTRA HIGH EMISSIVITY COATINGS FROM UV TO FIR

S - |R

ULTRA BLACK SPRAY-APPLIED COATING

DATA SHEET

9.0

www.surreynanosystems.com

Vantablack S-IR is an ultra black absorptive coating based on carbon nanotube technology.

It has been designed to give optimal performance from NIR to FIR, with excellent performance to 300µm.

It is applied using a proprietary spray process which permits application to a wide range of substrate materials and to complex shapes.

KEY FEATURES

- The world's blackest IR coating
- Excellent performance across NIR-FIR
- Excellent BRDF performance
- Low temperature coating process
- Low outgassing
- Extremely resilient to shock & vibration
- Wide operating temperature range in air and vacuum

VANTABLACK S-IR PERFORMANCE

Infrared - Hemispherical reflectance

TYPICAL APPLICATIONS

Vantablack S-IR is used for stray light control and calibration in a wide range of systems, for example as a stray light suppression coating in baffles, an absorber layer for thermal and optical sensors, in cavity blackbodies and as a blackbody calibration source.

Infrared cameras + sensors	> Stray light, cold shields, IR sensors, baffles, lens barrels
Electro-optical systems	> Stray light baffles, apertures, housings
Satellite systems	> Cavity blackbodies and thermal control
Astronomy	> Stray light control, apertures, lens barrels, housings
Metrology	> IR spectrum stray light control for spectrometers, cavity black bodies, and calibration source plates

TYPICAL PERFORMANCE DATA

Total Hemispherical Reflectance % Typical observed performance measured at 8° AOI	NIR (0.75-1.4µm) MWIR (3-8µm) LWIR (8-15µm)	0.2 % at 1.4μm 0.2 % at 5μm 0.4 % at 14μm
Angle Dependent Reflectance (3-5um) Typical values	AOI 10º AOI 30º AOI 50º AOI 70º	0.13 % 0.16 % 0.24 % 0.42 %
Coating thickness (average)	Typical 40µm (locally up	o to 100µm)
Operating temperature range in air	-196º to 300ºC	
Operating temperature range in vacuum or inert atmosphere	-196ºC to 700ºC	
Thermal Shock	-196° to 300°C tempera	ture swing over 5 minutes
Shock resistance	MIL STD 810 G Method	516.6
Vibration resistance	MIL STD 810 G Method	514.6
Humidity resistance	Hydrophobic	
Mass / substrate area	0.7 mg/cm ²	
Abrasion resistance	Low resistance to direct	impact or abrasion

OTHER CHARACTERISTICS

Suitable substrate selection	Suitable for coating of a wide range of non-volatile substrates where melting point is > 280°C
Handling considerations	Component design should incorporate suitable features to allow handling and also fastening during transit
Shape / form considerations	Complex 3D shapes can be coated
As-supplied form	Coating to be deposited directly to target component(s)

SAFETY DATA

Material Safety Data Sheet www.surreynanosystems.com/resources
--

Surrey NanoSystems Ltd Unit 24 Euro Business Park New Road Newhaven BN9 0DQ, UK

T: +44 (0) 1273 515899 E: enquiries@surreynanosystems.com W: www.surreynanosystems.com © 2017 Surrey NanoSystems